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A GENERALIZATION OF THE PRACTICAL NUMBERS

NICHOLAS SCHWAB AND LOLA THOMPSON

Abstract. A positive integer n is practical if every m ≤ n can be written as a sum of
distinct divisors of n. One can generalize the concept of practical numbers by applying an
arithmetic function f to each of the divisors of n and asking whether all integers in a given
interval can be expressed as sums of f(d)’s, where the d’s are distinct divisors of n. We will
refer to such n as ‘f -practical.’ In this paper, we introduce the f -practical numbers for the
first time. We give criteria for when all f -practical numbers can be constructed via a simple
necessary-and-sufficient condition, demonstrate that it is possible to construct f -practical
sets with any asymptotic density, and prove a series of results related to the distribution of
f -practical numbers for many well-known arithmetic functions f .

1. Introduction

Srinivasan first introduced the practical numbers as integers n for which every number
between 1 and n is representable as a sum of distinct divisors of n. In her Ph.D. thesis, the
second author adapted this concept to study the degrees of divisors of xn − 1. Recall that
xn − 1 =

∏

d|nΦd(x) where Φd(x) is the dth cyclotomic polynomial with deg Φd(x) = ϕ(d).

By applying Euler’s totient function on the divisors of n, the second author categorized the
numbers n for which xn− 1 has a divisor in Z[x] of every degree smaller than n, calling these
integers “ϕ-practical.” The aim of the present paper is to generalize much of the existing
literature on practical and ϕ-practical numbers.

Definition 1. Let f : N → N be a multiplicative function. We define

Sf (n) =
∑

d|n
f(d).

Therefore we have Sf = f ∗ 1, where 1(n) denotes the arithmetic function that is identically
1.

We note that the function Sf (n) is multiplicative, since it is the Dirichlet convolution of
two multiplicative functions.

Definition 2. Let f : N → N be a multiplicative function for which for every prime p and
every positive integer k satisfies f(pk−1) ≤ f(pk). A positive integer n is called f -practical if
for every positive integer m ≤ Sf (n) there is a set D of divisors of n for which

m =
∑

d∈D
f(d)

holds.

Example 1. If f = I (the identity function), this is equivalent to the definition of practical.

Example 2. If f = ϕ, this is precisely the definition of ϕ-practical.
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One can check whether all integers in an interval can be expressed as subsums of numbers
from a particular set by applying the following naive algorithm (cf. [11, Theorem A.1]):

Proposition 1.1. Let w1 ≤ w2 ≤ · · · ≤ wk be positive integers with
∑k

i=1wi = s. Then,
every integer in [0, s] can be represented as a sum of some subset of the wi’s if and only if
wi+1 ≤ 1 + w1 + · · ·+ wi holds for every i < k.

It is not so “practical” to use this algorithm to determine whether an integer n is practical.
Instead, it is useful to have a criterion in terms of the prime factors of n. In [7] Stewart gave
such a criterion for constructing practical numbers and proved that every practical number
can be obtained in this fashion. Stewart’s criterion for a number to be practical serves as a
key lemma in many subsequent papers on the practical numbers. The second author showed
in [11] that there are ϕ-practical numbers which cannot be constructed in such a manner. In
the present paper, we examine the functions for which this means of constructing f -practical
numbers is possible and obtain the following theorem.

Theorem 1.2. Let f be a multiplicative function. All f -practical numbers are constructable
by a Stewart-like criterion if and only if for every prime p for which there is a coprime integer
n with f(p) ≤ 1 +

∑

d|n f(d) the inequality

f(pk+1) ≤ f(p)f(pk)

holds for every integer k ≥ 0.

One of the aims of this paper is to study the distribution of f -practical numbers for various
arithmetic functions f . We show that it is possible to construct f -practical sets with any
asymptotic density. In fact:

Theorem 1.3. The densities of the f -practical sets are dense in [0, 1].

The f -practical sets that are the most interesting to study are those that are neither finite
nor all of N. Intuitively, if the values of f(n) are too large relative to n, then some integers in
the interval [1, Sf (n)] will always be skipped, resulting in a finite set of f -practical numbers.
On the other hand, if the values of f(n) are too small relative to n, then every integer winds
up being f -practical. Thus, the arithmetic functions which produce non-trivial f -practical
sets are those that behave like the identity function, i.e., those for which f(pk) ≈ (f(p))k

at all prime powers. Examples of functions satisfying this condition include I, ϕ, λ (the
Carmichael λ-function), and ϕ∗ (the unitary totient function).

Theorem 1.4. Let f = ϕ∗. Let Ff (X) be the number of f -practical numbers less than or
equal to X. Then there exist positive constants lf and uf such that

lf
X

logX
≤ Ff (X) ≤ uf

X

logX

for all X ≥ 2.

The result also holds for f = I and f = ϕ. For these functions, the distributions have been
well-studied. In a 1950 paper, Erdős [1] claimed that the practical numbers have asymptotic
density 0. Subsequent papers by Hausman and Shapiro [2], Margenstern [3], Tenenbaum [8],
and Saias [5] led to sharp upper and lower bounds for the count of practical numbers in the
interval [1,X]. A recent paper of Weingartner [12] showed that the count of practical numbers
is asymptotically cX/ logX, for some positive constant c. In her PhD thesis [11], the second
author proved sharp upper and lower bounds for the count of ϕ-practical numbers. This work
was improved to an asymptotic in a subsequent paper with Pomerance and Weingartner [4].
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For f = λ, computational evidence seems to suggest that X/ logX is the correct order of
magnitude for the f -practicals. Indeed, we prove that the upper bound from Theorem 1.4
holds when f = λ. However, we have not been able to obtain a sharp lower bound.

The proofs of the aforementioned theorems rely heavily on the fact that the functions f
are multiplicative (or nearly multiplicative, in the case of the Carmichael λ-function). We are
also able to prove density results for certain non-multiplicative f . For example, we classify
the additive functions f for which all positive integers are f -practical. We also examine some
f -practical sets where f is neither additive nor multiplicative.

The paper is organized according to the following scheme. In Section 2, we provide a
method for constructing infinite families of f -practical numbers. In Section 3, we classify the
set of all f -practical numbers that can be completely determined via a Stewart-like condition
on the sizes of the prime factors. In Section 4, we give examples of f -practical sets with
various densities and show that the densities themselves are dense in [0, 1]. In Section 5,
we prove upper and lower bounds for the sizes of the sets of f -practical numbers for certain
arithmetic functions f . Much of the work in the aforementioned sections applies only to
functions which are multiplicative or nearly multiplicative. In Section 6, we give density
results for f -practicals for some well-known non-multiplicative functions f .

Throughout this paper, we will use n to denote an integer and p to denote a prime number.
Moreover, we will use P (n) to represent the largest prime factor of n.

2. f -practical construction for multiplicative f

In this section, we develop the basic machinery for constructing infinite families of f -
practical numbers. Following the definition of weakly ϕ-practical numbers (see [10, Definition
4.4]), we introduce the concept of weakly f -practical numbers.

Definition 3. Let n = pe11 . . . pekk , where f(p1) ≤ f(p2) ≤ · · · ≤ f(pk). We define mi =
∏i

j=1 p
ej
j for every non-negative integer i < k. We call n weakly f -practical if for every i

f(pi+1) ≤ Sf (mi) + 1

holds.

Theorem 2.1. Every f -practical number is also weakly f -practical.

Proof. Let n =
∏k

i=1 p
ei
i be f -practical with f(p1) ≤ f(p2) ≤ · · · ≤ f(pk). Now let mi =

∏i
j=1 p

ej
j for every i < k. Suppose n is not weakly f -practical. Then there must be an i < k

so f(pi+1) > Sf (mi) + 1 holds. For every j > i + 1 we have f(pj) ≥ f(pi+1). Therefore for
every divisor d of n which does not divide mi we have f(d) ≥ f(pi+1) since f is multiplicative
and d must be divisible by some pj with j > i. Because the sum of f(t) over all t | mi is
exactly Sf (mi) there is no possibility to express Sf (mi) + 1 as a sum of f(d) for d | n. This
contradicts the fact that n is f -practical. �

Remark. In this proof we did not use the condition that f(ab) = f(a)f(b) but the implied
and weaker fact that f(ab) ≤ f(a)f(b). Hence this proof also holds, for example, for the
Carmichael λ-function. In fact, since λ(a) ≤ ϕ(a) for any integer a and λ(p) = ϕ(p), every
weakly λ-practical number is also weakly ϕ-practical, because ϕ(pi+1) = λ(pi+1) ≤ Sλ(mi)+
1 ≤ Sϕ(mi) + 1.

Corollary 2.2. If n is weakly f -practical and p ≤ P (n) then pn is also weakly f -practical.
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The following theorem gives a necessary and sufficient condition for a product of a prime
power and an f -practical number to be f -practical itself. For some functions f (like the
identity function) this gives a way to construct all f -practical numbers (cf. [7, Corollary 1]).
This is not the case for all functions. For example, for the ϕ function, there are numbers
that are ϕ-practical that are not the product of a ϕ-practical number and a prime power, as
is the case with 45 = 32 · 5.
Theorem 2.3. Let n be f -practical. Let p be prime with (p, n) = 1. Then npk is f -practical
if and only if f(pi) ≤ Sf (np

i−1) + 1 for all 1 ≤ i ≤ k.

Proof. If f(pi) > Sf (np
i−1) + 1 for some i ≥ 1, then Sf (np

i−1) + 1 is not representable as a

sum of f(d)’s with d | n, since for every divisor d of npk which does not divide npi−1 we have
f(d) > Sf (np

i−1) + 1.

We show by induction on k that npk is f -practical for all k. Assume npk−1 is f -practical
for some k ≥ 1. For k = 1 we have npk−1 = n which is given to be f -practical. We examine
the intervals between af(pk) and af(pk) + Sf (np

k−1) for a = 0, 1, . . . , Sf (n). Since

(a+ 1)f(pk) ≤ af(pk) + Sf (np
k−1) + 1

holds the intervals overlap or are contiguous. Because we have

Sf (n)f(p
k) + Sf (np

k−1) =
∑

d|n
f(dpk) +

∑

d|npk−1

f(d) = Sf (np
k),

1 and Sf (np
k) are included in these intervals. Thus, every integer m with 1 ≤ m ≤ Sf (np

k)

is representable as af(pk) + b with 0 ≤ a ≤ Sf (n) and 0 ≤ b ≤ Sf (np
k−1). As a result, we

have two sets D and T of divisors of n and npk−1 respectively, so

a =
∑

d∈D
f(d) b =

∑

t∈T
f(t).

Therefore we have

m = f(pk)
∑

d∈D
f(d) +

∑

t∈T
f(t) =

∑

d∈D
f(dpk) +

∑

t∈T
f(t).

Since t | npk−1 and pk | dpk the t’s and dpk’s are distinct. Hence, if we take E = {dpk : d ∈
D} ∪ T , we can write

m =
∑

e∈E
f(e)

where every e divides npk. Therefore npk is f -practical. �

Corollary 2.4. Every squarefree integer is f -practical if and only if it is weakly f -practical.

Proof. By Theorem 2.1, every squarefree f -practical number is also weakly f -practical.
Let n = p1 . . . pk be weakly f -practical and squarefree. For every i = 0, 1, . . . , k we define

mi = p1 . . . pi. Since n is weakly f -practical, we have f(pi+1) ≤ Sf (mi) + 1 for every i ≥ k.
Since 1 is f -practical we get from Theorem 2.3 that every mi is f -practical and n is also
f -practical. �

Theorem 2.5. Every integer n ∈ N is f -practical if and only if

f(pk) ≤ Sf (p
k−1) + 1(2.1)

holds for every prime p and every integer k ≥ 1.
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Proof. If the inequality holds we can use the fact that Sf is multiplicative to show that

Sf (np
k−1) + 1 = Sf (n)Sf (p

k−1) + 1 ≥ Sf (n)(f(p
k)− 1) + 1

for every integer n coprime to p. Furthermore for f(pk) 6= 1 the inequality Sf (n)(f(p
k) −

1) + 1 ≥ f(pk) is equivalent by multiplication by f(pk) − 1 to Sf (n) ≥ 1 which holds for

every n since f(1) = 1 and f(m) ≥ 0 for every m ∈ N. In addition for f(pk) = 1 we have
Sf (n)(f(p

k)− 1) + 1 = 1 = f(pk). Hence the inequality

Sf (np
k−1) + 1 ≥ Sf (n)(f(p

k)− 1) + 1 ≥ f(pk)

holds for every prime p, any integer k ≥ 1 and any integer n ≥ 0 coprime to p. Thereby the
condition for Theorem 2.3 holds for any n. Because 1 is always f -practical we can construct
every integer greater than 1 as a product of prime powers which are f -practical which implies
that this integer is also f -practical, if f satisfies (2.1) for every p and k.

If there exists a k ≥ 1 so f(pk) > Sf (p
k−1)+1 holds, pk is not f -practical since Sf (p

k−1)+

1 ≤ Sf (p
k) is not representable as a sum of f(d)’s for some d | pk. Hence not every integer

greater than 0 is f -practical. �

3. Classifying functions with Stewart-like criteria

Stewart gave a way to construct every practical number as a product of practical numbers
and prime powers ([7, Corollary 1]). As shown in the previous section, this is not possible
for the ϕ-practical numbers. We will now categorize the functions for which this means of
construction is possible.

Definition 4. A function f is convenient if and only if every weakly f -practical number is
also f -practical.

The following theorem gives an explicit way to check whether a function f is convenient.

Theorem 3.1. Let Pf be the set of the prime numbers which are f -practical. It is easy to
see, that these are exactly the primes p with f(p) ≤ 2. Then f is convenient if an integer n
is f -practical if and only if n is of the form

n = pa11 . . . pakk qb11 . . . qell

with primes p1, . . . , pk ∈ Pf and q1, . . . , pl 6∈ Pf with exponents a1, . . . , ak ≥ 1 and b1, . . . , bl ≥
1 (respectively) satisfying the following conditions

f(p1) ≤ · · · ≤ f(pk) < f(q1) ≤ · · · ≤ f(ql) k > 0

f(qi+1) ≤ Sf (p
a1
1 . . . pakk qb11 . . . qbii ) + 1 for i = 0, 1, . . . , l − 1.

Proof. We have shown in Theorem 2.1 that, for every f , each f -practical number is also
weakly f -practical. Hence a function f is convenient if and only if the set of weakly f -
practical numbers is identical to the set of f -practical numbers. �

Stewart’s condition shows that the identity function is convenient, whereas ϕ is inconve-
nient as the number 75 = 3 · 52 fulfills every condition and thereby is weakly ϕ-practical but
not ϕ-practical.

Theorem 3.2. A function is convenient if and only if for every prime p and f -practical
integer m which is coprime to p the inequality f(p) ≤ Sf (m)+ 1 implies f(pk+1) ≤ Sf (mpk).
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Proof. Let p be a prime for which f(p) ≤ Sf (m) + 1. Therefore mpk+1 should be f -practical

if f is convenient for every k ≥ 0. If there is an integer k for which f(pk+1) > Sf (mpk) + 1

then Sf (mpk) + 1 is not representable, which is a contradiction. Therefore, for a convenient

function f , the inequality f(p) ≤ Sf (m) + 1 always implies that f(pk+1) ≤ Sf (mpk) + 1 for
every integer k.

If we have f(pk+1) ≤ Sf (mpk) + 1 for every k and if f(p) ≤ Sf (m) + 1 holds for coprime p

and m, we can use Theorem 2.3 to show that mpk is f -practical for every k. Therefore every
integer n which fulfills the conditions of Definition 3 is f -practical. Since it has already been
shown that every f -practical fulfills this condition, we have that f is convenient. �

Theorem 3.3. A function f is convenient if and only if for every prime p for which there
is a coprime integer m with f(p) ≤ Sf (m) + 1 the inequality

f(pk+1) ≤ f(p)f(pk)

holds.

Proof. Let p be a prime and m ∈ N with gcd(m, p) = 1 and f(p) ≤ Sf (m) + 1. Assume

that the above inequality holds for p. We then show f(pk+1) ≤ Sf (mpk) + 1 by induction
over k. The base case is fulfilled for k = 0 since we have f(p) ≤ Sf (m) + 1. Assume that
f(pi+1) < Sf (mpi) + 1 for all i < k. We obtain

f(pk+1) ≤ f(p)f(pk) ≤ (Sf (m) + 1)f(pk) = Sf (m)f(pk) + f(pk)

≤ Sf (m)f(pk) + Sf (mpk−1) + 1 = Sf (m)f(pk) + Sf (m)Sf (p
k−1) + 1

= Sf (m)(Sf (p
k−1 + f(pk))) + 1 = Sf (mpk) + 1.

Therefore, we have f(pk+1) ≤ f(p)f(pk) for some p for which there is an integer m coprime
to p with f(p) ≤ Sf (m) + 1, so f is convenient.

Assume f is convenient. Hence, for all primes p and integers m coprime to p with f(p) ≤
Sf (m) + 1, we have f(pk+1) ≤ Sf (mpk) + 1 for every k. For every such p we also have

f(pk+1) ≤ Sf (mpk) + 1 = Sf (m)Sf (p
k) + 1 = Sf (m)(f(pk) + Sf (p

k−1)) + 1

= f(pk)Sf (m) + Sf (p
k−1m) + 1 ≤ f(pk)(f(p)− 1) + Sf (mpk−1) + 1

= f(pk)f(p) + Sf (mpk−1) + 1− f(pk)

≤ f(pk)f(p)

Therefore every convenient f fulfills the above condition. �

Corollary 3.4. Let f be convenient. Suppose there is at least one prime p with 1 ≤ f(p) ≤ 2.
Then, for every k primes f(p1) ≤ f(p2) ≤ · · · ≤ f(pk) where there is at least one prime pj
with 1 ≤ f(pi) ≤ 2 for all i ≤ j, there are k integers E1, E2, . . . , Ek so that, for every k
integers e1, . . . , ek with ei ≥ Ei, the integer pe11 . . . pekk is f -practical.

4. f -practical sets with various densities

As we remarked in the introduction, the set of practical numbers and the set of ϕ-practical
numbers both have asymptotic density 0. In this section, we examine the densities of other
f -practical sets. First, we give some natural examples with asymptotic density 1.

Example 3. Let τ be the count-of-divisors function. Every positive integer is τ -practical.

This follows from Theorem 2.5 due to the fact that τ(pk) = k+1 ≤ k(k+1)
2 +1 = Sf (p

k−1)+1 ≤
Sf (n)Sf (p

k−1) + 1 = Sf (np
k−1) + 1 holds for every prime p and positive integer k.
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If we take the inequality (2.1) as an equality for every p and k we obtain following function.

Example 4. Let vp(n) denote the p-adic valuation of n. The function h : N → N is defined
by

h(n) = 2
∑

p vp(n).

Since we have vp(ab) = vp(a) + vp(b) this function is multiplicative. It satisfies the condition
of Theorem 2.5 and therefore every positive integer is h-practical.

The following lemma shows that one can construct f -practical sets with any density.

Lemma 4.1. For each n ∈ N, there is a function fn such that the asymptotic density of

fn-practical numbers in N is 1− ϕ(n)
n .

Proof. We define the multiplicative function fn by fn(1) = 1 and

fn(p
k) =

{

2 if p|n
3 else

.

By Definition 4, this function is convenient. So, by definition, the fn-practical numbers are
exactly 1 and the natural numbers divisible by a prime which also divides n, since f(q) =
3 ≤ Sf (m) + 1 for every prime q which does not divide n and every m > 1. Therefore the
density of the fn-practical numbers is the density of the numbers not coprime to n, which is

1− ϕ(n)
n .

�

From this lemma, we can deduce the following theorem:

Theorem 4.2. The densities of the f -practical sets are dense in [0, 1].

Proof. From Lemma 4.1, for any integer n ∈ N, we can construct a set of f -practical num-

bers with density 1 − ϕ(n)
n . By [6, §5.17], the values of ϕ(n)

n are dense in [0, 1]. Thus, the

complementary values 1− ϕ(n)
n must be dense in [0, 1] as well. �

5. Chebyshev bounds for certain f -practical sets

In this section, we demonstrate how the machinery developed in [10] can be used to prove
Chebyshev-type bounds for other f -practical sets with f(pk) ≈ (f(p))k. We investigate two
particular examples with this property: f = ϕ∗, λ.

5.1. The ϕ∗ function. A divisor d of an integer n is unitary if gcd(d, n/d) = 1. The unitary
totient function ϕ∗ counts the number of positive integers k ≤ n for which the greatest
unitary divisor of n which is also a divisor of k is 1. Therefore we have for all prime p and
all integers k ≥ 1

ϕ∗(pk) = pk − 1.

Following the second author’s proofs in [11] we can now establish an upper bound for the
number of ϕ∗-practical integers.

Lemma 5.1. Every even weakly ϕ∗-practical number is practical.
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Proof. Let n be an even ϕ∗-practical number. Then, with the notation of Definition 3, for
every 0 ≤ i < ω(n), the inequality ϕ∗(pi+1) = pei+1

i+1 − 1 ≤ 1 + Sϕ∗(mi) holds. For every
integer k > 1, we have ϕ∗(k) < k and Sϕ∗(k) < σ(k), since the inequalities hold for the
prime powers and the functions are multiplicative. Therefore, for every mi > 1, we have
p
ei+1

i+1 = ϕ∗(pei+1

i+1 ) + 1 ≤ Sϕ∗(mi) + 2 ≤ σ(mi) + 1. Since n is even, we have m0 = 1 and
m1 = 2. Hence, we obtain by induction over i and by [7, Theorem 1] that n is practical. �

Now we can use Saias’ upper bound for the number PR(X) of practical numbers less than
or equal to X ([5, Théorème 2]) to prove the next result following the second author’s proof
in [11, Theorem 4.8].

Theorem 5.2. There exists a positive constant uϕ∗ such that

Fϕ∗(X) ≤ uϕ∗

X

logX

holds for any X ≥ 2.

Proof. Let X be a positive number and let n be a ϕ∗-practical number in the interval (0,X].
Therefore n is also weakly f -practical. If n is even it is also practical. If n is odd there is
a unique integer l so that 2ln is in (X, 2X]. Corollary 2.2 implies that 2ln is also weakly
ϕ∗-practical for n > 1 and it is easy to see that every power of 2 is weakly ϕ∗-practical. Thus,
we obtain

Fϕ∗(X) = #{n ≤ X : n is ϕ∗-practical}
= #{n ≤ X : n is even and ϕ∗-practical}+#{n ≤ X : n is odd and ϕ∗-practical}
≤ #{n ≤ X : n is practical}+#{X < m ≤ 2X : m is practical}
= PR(2X).

As proven by Saias [5, Theorem 2] there exists a positive constant uI so that

PR(X) ≤ uI
X

logX

holds. By choosing uϕ∗ = 2uI we obtain the desired result. �

Since we have ϕ(p) = ϕ∗(p) for every prime p the squarefree ϕ∗-practical numbers are
exactly the squarefree ϕ-practical numbers. As shown by the second author in [11, Lemma
4.17 and Theorem 4.21] there exists a lower bound c X

logX for the number of squarefree ϕ-

practical numbers less than or equal to X. Since the squarefree ϕ-practical and ϕ∗-practical
numbers are the same, we thereby obtain a lower bound for the number of squarefree ϕ∗-
practical numbers less than or equal to X.

Theorem 5.3. There exists a positive constant lϕ∗ so that

lϕ∗

X

logX
≤ #{n ≤ X : n is squarefree and ϕ∗-practical} ≤ Fϕ∗(X)

holds for every X ≥ 2.
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5.2. The Carmichael λ function. The Carmichael function λ(n) denotes the least integer
m for which we have

am ≡ 1 mod n

for every integer a coprime to n. We will use λ⋆ to denote the set of positive integers that are
f -practical when f = λ. We use the ⋆ notation to emphasize that this notion of “λ-practical”
differs from the definition of λ-practical given by the second author in [9], which can be stated
as follows:

Definition 5. An integer n is λ-practical if and only if we can write every m with 1 ≤ m ≤ n

in the form m =
∑

d|n λ(d)md, where md is an integer with 0 ≤ md ≤ ϕ(d)
λ(d) .

The values of n satisfying this definition of λ-practical are precisely those for which the
polynomial xn − 1 has a divisor of every degree between 1 and n in Fp[x] for all primes p.
The sets of λ-practical numbers and λ⋆-practical numbers do not coincide. For example, 156
satisfies the definition of λ-practical in [9] but it does not satisfy our definition of λ⋆-practical.
However, it turns out that every λ⋆-practical number is λ-practical. We will prove a slightly
more general theorem.

Theorem 5.4. Suppose that w1, ..., wt and u1, ..., ut are positive integers, with w1 > w2 >
· · · > wt. Let S =

∑t
i=1wi and T =

∑t
i=1 uiwi. Suppose that each positive integer up to S

is a subset sum of wi’s. Then each m ≤ T can be written in the form

m =
t

∑

i=1

aiwi,

where 0 ≤ ai ≤ ui.

Proof. Let W be a list of wi’s, with ui instances of each wi, written in decreasing order. Let
k ≤ T . Starting with the first entry, iteratively subtract elements of W from k, removing
each element from the list after it is subtracted to create a new list with one fewer entry.
Terminate the process upon arriving at some k′ that is either 0 or smaller than the largest
remaining wi, which we will denote wj . By hypothesis, since k′ < wj ≤ S then k′ is a subset
sum of wj+1, ..., wt. Now, if we add k′ to all of the wi’s which were previously subtracted,
then k is representable as

k =

t
∑

i=1

aiwi,

with 0 ≤ ai ≤ ui, as claimed.
�

Corollary 5.5. Every λ⋆-practical number is also λ-practical.

Proof. The result follows from applying Theorem 5.4 with t = τ(n); w1, ..., wt the sorted list
of values of λ(d) with d | n; u1, ..., ut the corresponding values of ϕ(d)/λ(d); S = Sλ(n); and
T = n. �

We can use the upper bound for the count of λ-practical numbers given by [9, Proposition
5.1] to deduce the following theorem.
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X F ⋆
λ (X) F ⋆

λ (X)/(X/ logX)
101 6 1.381551
102 28 1.289448
103 164 1.132872
104 1015 0.934850
105 7128 0.820641
106 52326 0.722910
107 409714 0.660381

Table 1. Ratios for
λ⋆-practicals

X F ⋆
λ (X) F ⋆

λ (X)/(X/ logX)
1 · 106 52326 0.722910
2 · 106 96667 0.701254
3 · 106 139139 0.691712
4 · 106 179854 0.683526
5 · 106 219598 0.677458
6 · 106 258656 0.672819
7 · 106 297202 0.669189
8 · 106 335181 0.665961
9 · 106 372779 0.663246
1 · 107 409714 0.660381

Table 2. A closer look at the
range from 106 to 107

Theorem 5.6. There exists a positive constant uλ⋆ such that

Fλ⋆(X) ≤ uλ⋆

X

logX

holds.

Unfortunately, we have been unable to prove a reasonable lower bound for Fλ⋆(X). It is
not clear from our computations (see Tables 1 and 2) whether X/ logX is the correct order
of magnitude for the λ⋆-practicals.

6. f -practicals for non-multiplicative f

In this section, we remove the condition that f is multiplicative and study the correspond-
ing f -practical sets for several well-known non-multiplicative functions.

6.1. additive functions. The naive criterion of Proposition 1.1 is of much better use for
additive functions than for multiplicative functions. For the additive functions we want to
consider, we require f(p) ≥ 1 for every prime p.

Lemma 6.1. Let n =
∏k

i=1 p
ei
i be a positive integer with prime pi. Then n is f -practical for

an additive function f if and only if

f(pei ) ≤ 1 +
∑

d|n
f(d)<f(pei )

f(d)

holds for every 1 ≤ i ≤ k and e ≤ ei.

Proof. It follows immediately from Proposition 1.1 that this inequality is necessary for n to be

f -practical. Now let t =
∏k

i=1 p
ai
i be a divisor of n. Since f is additive we have f(t) > f(paii )

for every i if t is not a prime power, i.e., we must have ai > 0 for at least two different i. We
thereby obtain

f(t) = f(
k
∏

i=1

paii ) =
k

∑

i=1

f(paii ) ≤ 1 +
∑

d|n
f(d)<f(t)

f(d)

which implies that n is f -practical. �
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Corollary 6.2. For additive functions f , every integer n is f -practical if and only if f(pk) ≤
1 +

∑k−1
i=0 f(pi) holds for every prime p and any positive integer i.

Remark. Let ω(n) denote the number of distinct prime factors of an integer n, and let Ω(n)
denote the number of prime factors of n with multiplicity. Both functions are additive but
not multiplicative. Corollary 6.2 shows that every positive integer n is ω-practical and Ω-
practical.

Remark. Let f = vp(n), the exact power of p dividing n. The fact that the set of f -practicals
encompasses all natural numbers follows from Corollary 6.2. One can also prove that all
natural numbers are vp-practical via a simple combinatorial argument: we can write

Svp(n) =
vp(n)(vp(n) + 1)

2
· τ

(

n

pvp(n)

)

,

where
vp(n)(vp(n)+1)

2 = 1 + 2 + · · · + vp(n) is the sum of all of the valuations at powers of p
and τ( n

pvp(n) ) represents the number of identical copies of the valuations 1, 2, ..., vp(n), which

come from multiplying the powers of p by each of the divisors of n that are coprime to p.
Every integer m in the interval [1, Svp(n)] can be represented as m = vp(n)q+ r for some r, q

satisfying 0 ≤ r < vp(n) and 0 ≤ q ≤ τ(n/pvp(n)).

As the next example demonstrates, there are also some natural examples of additive func-
tions for which the set of f -practicals does not coincide with the full set of natural numbers.

Example 5. Let a1(n) =
∑

p|n p, the sum of the distinct primes dividing n. For every n > 1

and every 1 < d|n there is a prime p > 1 which divides d. Therefore we have a1(d) ≥ p > 1.
Hence the number 1 < a1(n) ≤ Sa1(n) is not representable. In particular, this shows that 1
is the only a1-practical number.

6.2. Functions which are neither additive nor multiplicative. We can also define f -
practical numbers for functions f which are neither multiplicative nor additive. One such
example is the sum-of-proper-divisors function, which is defined as follows:

Definition 6. Let s : N → N be given by s(n) = σ(n)− n.

The function s is used in the study of perfect numbers. Namely, if s(n) = n then n is
perfect. If s(n) > n, we say that n is abundant. Since s is an arithmetic function, we
can use the f -practical definition to define s-practical numbers. We begin by demonstrating
that there are infinitely many s-practical numbers. To show this, we will need the following
lemma.

Lemma 6.3. For two coprime integers a, b we have

s(ab) = s(a)s(b) + as(b) + bs(a).

Proof. Observe that

s(ab) = σ(ab)− ab = σ(a)σ(b) − ab = (s(a) + a)(s(b) + b)− ab

= s(a)s(b) + as(b) + bs(a).

�

Theorem 6.4. There are infinitely many s-practical numbers.



12 NICHOLAS SCHWAB AND LOLA THOMPSON

Proof. Every prime is s-practical, since we have

Ss(p) =
∑

d|p
s(d) = s(1) + s(p) = 0 + 1 = 1

for prime p. �

The function s is not multiplicative, which prevents us from using the machinery developed
in previous sections to prove upper and lower bounds for the count of s-practical numbers.
However, it is still possible to show that the s-practical numbers arising from integers n with
n ≤ 2Ss(n) have asymptotic density 0. To prove this, we will follow an argument that was
used by the second author in [10] to show that the ϕ-practical numbers have asymptotic
density 0. We note that Erdős [1] was the first to claim that the practical numbers have
asymptotic density 0. Although he did not write down a proof, it is likely that he had a
similar argument in mind.

Theorem 6.5. If n1/2 ≤ Ss(n) then the s-practicals have asymptotic density 0.

Proof. We have τ(n) ≤ 2Ω(n). Because Ω(n) has normal order log log n, for all n except a set
with asymptotic density 0 we have

τ(n) ≤ 2Ω(n) ≤ 2(1+ǫ) log log(n) = (log n)(1+ǫ) log 2 ≤ (log n)0.7

if we fix ǫ = 1/1000. But for every s-practical n it has to be the case that Ss(n) ≤ 2τ(n)−1

since there are at most 2τ(n) different numbers which can be represented as the sum of s(d)’s
where the d’s are some of the τ(n) divisors of n and each number between 1 and Ss(n) has
to be representable as such a sum in order for n to be s-practical. Because we have s(1) = 0,
half of these possible sums coincide, as there is no difference between the sums with and
without s(1). From the hypothesis n1/2 ≤ Ss(n), we hence obtain

1

2
log n ≤ logSs(n) ≤ τ(n) log 2 < τ(n) ≤ (log n)0.7.

But for all n ≥ e8
3√2, we have

1

2
(log n)0.3 ≥ 1

2

(

3
√
1024

)0.3
=

1

2
· 10240.1 = 1.

So for almost all n the inequality 1
2 log n ≥ (log n)0.7 holds. Therefore the set of s-practical

values of n with n1/2 ≤ Ss(n) has asymptotic density 0. �

Lemma 6.6. The inequality n1/2 ≤ Ss(n) holds for almost all n.

Proof. If n is composite, its least prime factor p satisfies p ≤ n1/2, so n/p is a proper divisor

of n that is ≥ n1/2. Thus, we have

Ss(n) ≥ s(n) ≥ n

p
≥ n1/2.

Since the set of composite numbers has asymptotic density 1, it follows that Ss(n) ≥ n1/2

holds for almost all n. �

We can deduce the following corollary from Theorem 6.5 and Lemma 6.6.

Corollary 6.7. The set of s-practical numbers has asymptotic density 0.
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